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7.1 Introduction and Background

Semiconducting polymers have always been associated with flexible applications, such as solar cells,

active-matrix displays, and biomedical sensors."> Mechanical flexibility of these materials, however, is

not automatic. The mechanical properties of semiconducting polymers must be engineered by tuning

the chemical structure, molecular weight, processing conditions, and interactions with other materials

in the device stack.* Despite the importance of mechanical deformability in essentially all applica-

tions of semiconducting polymers, mechanical properties have, until recently, been an afterthought. For

example, the mechanical stability of organic solar cells has often been overlooked in favor of improving
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250 Conjugated Polymers

power conversion efficiencies. However, the development of semiconducting polymers that can endure
the rigors of roll-to-roll coating, survive long term against mechanical deformations in the outdoor
environment, and withstand packing and transportation in portable devices demands an understand-
ing of their mechanical properties. These properties—including elasticity, extensibility, strength, and
toughness—are critically dependent not only on the molecular structure of the materials but on the
ways these structures pack in the solid state, which are, in turn, mediated by the conditions of process-
ing. Prediction of the mechanical behavior of materials in a device is confounded by the fact that the
properties of materials measured in the laboratory can depend on testing conditions, such as tempera-
ture, strain rate, and choice of substrate.

The mechanical properties of polymers, at the most basic level, can be usefully classified according to
their response to applied loads (glassy or rubbery) and the corresponding mechanism of fracture (brittle
or ductile). The mechanical response and fracture mechanism of any polymer under deformation can
be captured in a stress—strain curve, an idealized example of which is shown in Figure 7.1. For a given
material, a stress—strain curve reveals mechanical properties such as the elastic modulus, yield point,
and toughness. The mechanical property to be optimized depends on the application. For example,
bonding a device to a nonplanar surface such as a lens or windshield may require large extensibility
that need not be reversible (i.e., plastic as opposed to elastic), while incorporating such a material into a
device to be worn on the skin, which is reversibly deformable, requires the opposite. Applications that
will be subject to twisting and shear deformations require high cohesive and adhesive energies within
and between the layers in the device stack. The mechanisms by which semiconducting polymers store
or dissipate mechanical energy depend on many of the same characteristics that influence the mechani-
cal behavior of commodity polymers and engineering plastics: e.g., the barriers to molecular rotation,
degree of crystallinity, glass transition temperature. The ways in which semiconducting polymers medi-
ate mechanical energy also depend, however, on characteristics that are rarely found in conventional
polymers: e.g., stiffness of the n-conjugated backbone, the flattened, anisotropic shape of a polymer
chain, and the ubiquitous presence of side chains.

7.1.1 Semiconducting Polymers as a Subset of All Solid Polymers

The presence of solubilizing pendant groups in semiconducting polymers is required for solution process-
ing, as the unsubstituted main chain of a n-conjugated polymer is generally insoluble.* Semiconducting
polymers are rendered soluble by the attachment of alkyl side chains, which afford solubility by weaken-
ing strong van der Waals interactions between main chains and by conferring greater entropic freedom
of the polymer in solution.® These side chains also strongly affect the thermomechanical properties and
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FIGURE 7.1 A hypothetical stress—strain curve illustrating its most important features.
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solid-state packing. Among these “comb-like” polymers, the side chains in the solid state can point
end-to-end or they can interdigitate. A polymer whose side chains interdigitate is often stiffer and more
brittle because of increased crystallinity. Improved molecular packing in crystalline regions also results
in an anisotropic elastic modulus due to unequal densities of van der Waals interactions in orthogonal
directions (e.g., T—7 stacking vs interactions between interdigitated side chains).

Analysis of the mechanical properties of commodity polymers and engineering plastics is a well-
established discipline. Semiconducting polymers, however, differ from conventional, non-conjugated
plastics in a number of ways. These differences include obvious dissimilarities in chemical structure—
namely, increased stiffness of the backbone due to n-conjugation—and practical considerations such
as the availability of materials for mechanical testing. Conventional pull-testing of a solid polymer
to obtain a stress—strain curve often requires large quantities of the material. Pilot-scale syntheses of
semiconducting polymers, however, typically produce materials in quantities sufficient to fabricate only
thin films (~100 nm).* While the thin film is the only geometry of these materials used in devices, it is
inconvenient to measure the mechanical response of a thin film. Methods have thus been developed
specifically to determine the mechanical properties of thin films of semiconducting polymers, though
the choice of method often has an effect on the mechanical response. Conveniently, the mechanical
properties of semiconducting polymers are intrinsically coupled to their thermal properties and phase
transitions, and these transitions—in particular, the glass transition temperature, assuming it too can
be measured—may be used to predict at least some of the mechanical behavior.

The thermal transition of semiconducting polymers which perhaps most greatly influences the
mechanical response is the glass transition, and the temperature at which it occurs (T,). Traversing
the T, corresponds to a second-order phase transition from a glass to a rubbery solid. The transition
is also characterized by an increase in heat capacity, specific volume, and deformability.® While the
T, of conventional plastics is usually determined calorimetrically, the small change in heat capacity of
semiconducting polymers around the T, is often difficult to detect, though several methods have been
developed to circumvent this difficulty.”®

Experimental methods developed to understand the thermomechanical properties of semiconduct-
ing polymers—especially the aspects of semiconducting polymers that differ from conventional poly-
mers—have been supplemented by computation.®® When semiconducting polymers are processed
from solution, the morphology that forms upon evaporation of the solvent is often difficult to predict.
Theoretical models have thus been developed to investigate the nanoscale structural characteristics and
conformational behavior that control the mechanical properties of semiconducting polymers and—as
are required for organic solar cells—their composites with soluble fullerenes.!!

Effects of molecular mixing on the thermomechanical behavior of polymer-fullerene composites,
such as stiffening and embrittling of the polymer, are the result of molecular recognition (i.e., intercala-
tion of fullerenes between side chains) and corresponding changes in microstructural order. Indeed, the
solid-state packing structure, as it is determined by molecular structure and solid-state microstructure,
greatly influences the mechanical properties of semiconducting polymers.'? The following sections dis-
cuss the elementary principles that govern the mechanical properties of semiconducting polymers and
the ways in which these materials mediate mechanical energy.

7.2 Deformation in Solid Polymers

Depending on the type of material, geometry of the specimen, and conditions of the applied forces, dif-
ferent modes of deformation may occur on the application of tension, compression, shear, or twisting.
As these different forces are applied to an object, intermolecular forces arise in the deformed body to
resist or minimize deformation. On the application of sufficiently large loads, however, the deformed
body may break to dissipate mechanical energy. Deformation may also occur as a result of changes in
temperature; in this case, thermal energy induces change in the shape and size of an object (e.g., expan-
sion or contraction).
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7.2.1 Mediation of Mechanical Energy

The mechanical response of a solid polymer is governed principally by two structures which are char-
acterized by different length scales: the molecular structure (~1 A - 10 nm) and the solid-state micro-
structure (~10 nm - 100 nm). The molecular structure controls the mechanical response by bonding
topology, molecular weight, and other parameters at the scale of individual chains. The microstructure
determines the mechanical response based on the degree of crystallinity, the glassy state, and the allow-
ance of slip in the crystalline domains. The evolution in the structure of a solid polymer at various size
scales upon deformation—i.e., from the bending, stretching, and breaking of covalent bonds to the
deformation of entire crystallites—serves to either store or dissipate mechanical energy. The ways in
which a solid polymer stores or dissipates this energy can be classified by its modes of deformation:
elastic deformation, plastic deformation, and fracture.

Atsmall strains, glassy polymers, in which little molecular motion is allowed, exhibit linear elastic behavior
that is driven by an enthalpic response to mechanical deformation, as polymer chains are displaced from local
minima in potential energy. Further elongation of glassy samples causes non-reversible deformations due to
sliding and alignment of chains in response to tensile stress. These deformations may occur at constant vol-
ume (i.e., shear yielding) or they may be dilatational (i.e., crazing) depending on the degree of entanglement
of chains. On the other hand, in rubbery polymers (elastomers), in which considerable molecular motion
is allowed, the polymer chains behave as entropic springs: upon elongation, a reduction in the number of
conformations available to chains decreases the entropy of the system. This decrease in entropy generates a
restoring force that causes chains to relax to their equilibrium states upon releasing the applied strain.

When the applied strain is sufficiently large, solid polymers fracture by either cohesive failure—
which occurs when the cohesive energy of the material is overcome—or adhesive failure—which occurs
as a result of debonding at the interface between a polymer and the underlying substrate. These modes
of deformation in any solid polymer—from linear elasticity to fracture—are all, in turn, affected by the
thermomechanical properties of the material and thus the phase of the solid polymer.

7.2.2 Elasticity and Plasticity

For semicrystalline polymers below T, elasticity is mediated by van der Waals forces and deformation
of covalent bonds. On experimentally relevant time scales, relaxation of polymer chains in such materi-
als is prohibited, which reduces the rotational and translational mobility that these chains can exhibit.
Conversely, for semicrystalline polymers above the glass transition temperature, chains are allowed to
reorganize and align along the axis of applied tensile strain due to a reduction in viscosity. The result-
ing decrease in internal, or entropic, degrees of freedom upon deformation and concomitant restoring
force is the basis of linear elasticity in solid polymers. This elastic behavior terminates either with brittle
fracture or with plastic deformation followed by ductile fracture.

The yield point marks the onset of plastic deformation, at which point the mechanical energy stored
during elastic behavior is dissipated plastically. In other words, polymers chains adopt new configu-
rations at mechanical equilibrium once the elastic strain energy exceeds intermolecular and entropic
forces in the elastic regime. This plastic deformation is generally non-reversible and occurs due to slid-
ing and alignment of chains in response to tensile stress. Such mobility of polymer chains is facilitated
by a low T, but may be hindered due to the existence of strong intermolecular forces uniformly in a
polymer crystal. For example, interdigitation between side chains in the crystalline domains of semi-
crystalline semiconducting polymers causes these materials to exhibit brittle behavior, instead of plastic
deformation, to dissipate mechanical energy.

7.2.3 Fracture

The total energy per unit volume that a material can absorb before fracture is known as its tough-
ness. Cyclic or intermittent loading can lower the elasticity and toughness by the accumulation of chain
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scission and microstructural rearrangement produced by strain and local heating. For samples with low
molecular weight and therefore low densities of entanglements, pullout of polymer chains can become
a dominant mechanism of fracture. Fracture in a real sample is also triggered by the presence of defects
in solid films. That is, mechanical energy is concentrated in the vicinity of small inhomogeneities, such
that fracture occurs due to the enlargement of these regions.”* Under tensile elongation, the mechanism
of fracture may be determined by the shape of the stress—strain curve (Figure 7.1). Moreover, the nature
of the fracture surface differs considerably' between cracked thin films of brittle and ductile polymers.
In contrast to brittle solids, plasticity contributes to the fracture of ductile solids. A plastic zone devel-
ops at the tips of cracks in ductile materials, and energy is dissipated primarily due to plastic flow in
the material near these crack tips, rather than due to the creation of new surfaces. In either brittle or
ductile materials, fracture produces a new surface, the formation of which is balanced by the dissipation
of elastically stored energy.

The cohesion of a semiconducting polymer determines in large part its mechanical reliability and
resistance to fracture, necessary for deformable applications. The criterion that best portends the frac-
ture of a solid material or interface is the strain-energy release rate, G (in ] m2), which is defined as the
energy available for unit increase in crack length, 2¢:

CdA dA h

_daw dU_l(dW dU) o)
dc  dc

where W is the external work being done on the system, U is the elastically stored energy, A is the sur-
face area of the crack, and h is the thickness of the specimen. It is assumed that fracture occurs when
G exceeds the critical value G, known as the cohesive fracture energy.”® This energy is the combined
energy of various dissipative processes, which include molecular deformations, plastic flow in fracture
process zones (i.e., regions of damage around crack tips), and scission of chemical bonds. The cohesive
energy, which may be determined using double cantilever beam or four-point bending tests,* depends
on van der Waals interactions, chemical bonding, and the degree of entanglement.

An entanglement is defined as a physical linkage between two polymer chains whereby molecules can
slide past but not through each other. Greater degrees of entanglement correspond to larger values of the
cohesive energy. The density of entanglements in a polymer scales with its molecular weight and directly
controls the mechanisms of energy dissipation in the fracture process zone. Increasing the molecular
weight of a semiconducting polymer results in more extensive plastic deformation and frictional pull-
out of chains prior to cohesive failure. Eventually, sufficient entanglement entails scission of chemical
bonds upon fracture. The cohesion thus strongly influences the mechanical properties and mechanisms
of fracture.”®

7.3 Mechanical Properties and Measurement Techniques

It is generally challenging to measure the mechanical properties of thin films for two reasons. First,
handling these films for a conventional pull test is difficult. Second, pilot-scale syntheses typically do
not produce material in quantities large enough for testing more than a few films. These challenges have
been met by the development of different methods that facilitate the handling of thin films to determine
their mechanical response to tensile strain.

7.3.1 Overview of Mechanical Properties

Theclassicalwaytoobtainthemechanicalresponseofamaterialisthroughastress—straincurve (Figure7.1).
The slope of the linear region gives the elastic modulus of a material. This parameter is a measure of the
capacity of a material to reversibly store mechanical energy—and thus its resistance to elastic deforma-
tion. The area under the linear region is the resilience, which is the maximum energy density that a
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material can store before exhibiting irreversible plastic deformation. The yield stress corresponds to the
stress at which the material deforms plastically and permanently (i.e., when the mechanical response
becomes driven by sliding and alignment of chains). Graphically, the yield stress is represented by the
point past which the stress—strain curve becomes nonlinear. The highest point reached on the verti-
cal axis of a stress—strain curve corresponds to the ultimate stress (or strength) and ultimate strain.
The strain (stress) at which the material ruptures is known as the fracture strain (stress). Finally, the
area under the entire curve is the toughness, which is the maximum energy density that a material can
absorb before mechanical failure.

7.3.2 Common Measurement Techniques

There are three common approaches for measuring the mechanical properties of thin films of semi-
conducting polymers. The first approach (Figure 7.2a) is referred to as the film-on-water technique: a
thin film is supported on the surface of water and subjected to a uniaxial pull test. A stress—strain curve
is then produced by measuring the force required to elongate the film by a set distance. The second
approach (Figure 7.2b) is a suite of methods referred to as film-on-elastomer techniques. To approxi-
mate the mechanical response of semiconducting polymers to tensile strain, the film-on-elastomer
method consists of three separate experiments in which a thin film is supported by an elastomer such
as poly(dimethylsiloxane) (PDMS). The third approach (Figure 7.2c and Figure 7.2d) is to determine the
adhesion and cohesion of thin films by measuring applied forces (e.g., due to bending) versus displace-
ment of a beam or cantilever. Other techniques to quantify the mechanical properties of semiconduct-
ing polymers and their blends with fullerenes have been developed. These techniques involve either
atomic force spectroscopy,'® nanoindentation,"” or scratch testing.

The film-on-water method is a pseudo freestanding tensile test.'®?! This method leverages the high
surface tension and low viscosity of water to provide an almost frictionless support for thin films. The
film-on-water method works well for a range of semiconducting polymers so long as the materials do
not interact with water, particularly through dissolution or swelling. Soft, elastomeric grips are used to
make contact between the fragile thin films, linear actuator, and force-sensing equipment. One of the
primary advantages of the film-on-water method is that it allows the acquisition of a complete trace of
force as a function of displacement that, along with the dimensions of the sample, can be used to gen-
erate a stress—strain curve. The mechanical properties of solid polymers, however, depend on the rate
of applied strain: higher strain rates generally lead to greater elastic moduli when testing viscoelastic
materials such as semiconducting polymers. A more complete description of the effects of strain rate on
the mechanical properties of polymers is given in Section 7.4.3.

The film-on-elastomer method consists of a buckling-based metrology,? laser determination of the
yield point (LADYP),” and crack-onset strain measurement.?® The buckling technique, shown schemat-
ically in Figure 7.2b (top), is used to determine the elastic modulus of thin films of semiconducting poly-
mers based on well-established buckling mechanics.?* Mechanical buckling occurs when a relatively
stiff and thin film is compressed on a compliant, thick substrate. This compression produces a buckling
instability due to the balance between the energy required to deform the soft substrate and the energy
required to bend the stiff film. This instability manifests as a sinusoidal wrinkling pattern with a well-
defined wavelength. At some critical wavelength, which is a function of the material properties of both the
film and the substrate, the total strain energy in the system is minimized. The buckling wavelength, A,
may be used to calculate the elastic modulus of the film, E;, using the relation

1—1/? 7\4]) :
E; =3E, — 7.2
! (l—vs2 )(Znh) 2

where E, is the elastic modulus of the substrate, h is the film thickness, and v; and v are the Poisson
ratios of the film and the substrate, respectively.
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FIGURE 7.2 Common methods used to determine the mechanical properties of thin films of semiconducting
polymers. (a) Diagram of the film-on-water testing procedure; the system for tensile testing consists of a linear
stage, a load cell, and a digital image correlation (DIC) camera. Reproduced with permission from Kim et al., Nat.
Commun. 2013, 4, 2520. Copyright 2013, Nature Publishing Group. (b) Diagrams of the film-on-elastomer testing
procedures, namely buckling and laser determination of the yield point (LADYP). Reproduced with permission
from Printz et al. ACS Appl. Mater. Interfaces 2015, 7, 23257-23264. Copyright 2015, American Chemical Society.
(c) Schematic of the experimental setup for four-point bending in which the specimen has a starter notch that
is equidistant from the pins on the side under tension; P is the applied force. Reproduced with permission from
Balar et al., Macromolecules 2017, 50, 8611-8618. Copyright 2017, American Chemical Society. (d) Schematic of the
experimental setup for the double cantilever beam test by which a pristine specimen is separated into two fractured
halves. Reproduced with permission from Dupont et al., Org. Electron. 2013, 14,1262-1270. Copyright 2013, Elsevier.

LADYP, shown in Figure 7.2b (bottom), is a film-on-elastomer technique used to determine the yield
point of thin films by identifying the termination of their elastic behavior.”” To implement the LADYP
test, thin films are transferred to an elastomeric substrate and are subjected to cyclic, incremental strain
in steps of 1% —i.e., 0% — 1% — 0% — 2% — 0% — 3% — 0%, and so forth. Periodic wrinkles are formed
when the yield point, or onset of plastic deformation, of the material is reached. These wrinkles can be
visualized either directly using an optical microscope or indirectly through their manifestation of a dif-
fraction pattern when irradiated with a laser beam.
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Measurement of crack-onset strain is the simplest film-on-elastomer technique and is used to esti-
mate the strain at fracture of a thin film supported by an elastomer.? For this test, a polymer film is
transferred to an elastomeric substrate, uniaxially strained in increments of 1%, and imaged under an
optical microscope. The crack-onset strain is then identified as the strain at which cracks or pinholes
first appear in the film. This measurement, however, is limited by the resolution of the microscope.
Moreover, cracking behavior in supported films is dependent on both adhesion and the mismatch
between the elastic moduli of the film and the substrate: a greater elastic mismatch produces lower
crack-onset strains (increased effective brittleness).26-2°

Adhesion and cohesion are two mechanical properties that accurately quantify and describe the frac-
ture behavior of a thin film. Films that poorly adhere to the substrate are susceptible to delamination,
and films that poorly cohere are likely to crack or bifurcate. Adhesion and cohesion are functions of van
der Waals interactions, chemical bonding, and the density of entanglements.* Common techniques to
determine the adhesion and cohesion of a thin film include four-point bending and the double cantile-
ver beam test. Four-point bending is best suited to measure interfacial adhesion between layers, though
it may also be used to measure the cohesion of individual layers. This technique involves loading a film
between two beams and applying a force using bending pins, as shown in Figure 7.2¢c. The sandwiched
film has a starter notch that is equidistant from the pins on the side under tension. To direct the propa-
gation of this notch to the interface of interest, a small area of material known to have poor adhesion is
often incorporated. The experimental setup for the double cantilever beam test consists of a single film
or multiple films placed between two beams. As shown in Figure 7.2d, a force is applied normal to the
surface at one end of each beam. Similar to four-point bending, the double cantilever beam test can be
used to quantify both adhesive and cohesive fracture of thin films.

7.4 Effects of Physical Parameters

The mechanical properties of thin films of semiconducting polymers are influenced by a wide range
of experimentally controllable parameters that are distinct from molecular structure. These physical
parameters include substrate compliance, film thickness—which is directly affected by processing con-
ditions—and strain rate. Changes in these parameters primarily manifest as increases or decreases in
the strain-energy release rate upon elongation.?”?8 The thickness of the film may also influence the mea-
sured cohesive energy, as the size of the plastic zone may be geometrically confined by the boundaries of
the specimen to a smaller volume.™ In addition, fracture processes are dominated by viscoelastic relax-
ation mechanisms, which correspond to a dependence on the strain rate. It follows that the mechanical
properties of thin films of semiconducting polymers (as in a device) can be modulated by parameters
other than the chemical structures of these materials.

7.4.1 Effects of Elastic Mismatch and Adhesion

The strain-energy release rate (Equation (7.1)) is a function of the mismatch between the elastic moduli
of the film and the substrate.?” This dependence is a consequence of stress localization at the interface
of a strained bilayer structure, such as a rigid film supported by a compliant substrate, with increasing
elastic mismatch. The elastic mismatch may be quantified using Dundurs’ parameters o and p:26%

oo BB g THe(1=2v)) = (1-2vi) (73)
E¢+E, 2 pe(1=vy)+us(1-ve)
where E= E/ (1 —vz) , v is the Poisson ratio, u=E/ (2(1+ v)) , and subscripts ‘t” and ‘s’ denote the film

and the substrate, respectively. For stiff films of semiconducting polymers and relatively compliant sub-
strates of PDMS, E; > E_ implies that o ~ 1. Furthermore, the dependence of G on f is weak when a>0
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and P may be neglected, but G becomes an increasingly strong function of o as o tends to 1; in particular,
G increases with increasing .22 Since a quantifies the mismatch between the elastic moduli of the film
and the substrate, G exceeds G. (Section 7.2.3) at comparatively lower strains for systems with greater
elastic mismatch. Consequently, the more compliant the substrate, the lower the strain at fracture of the
supported polymer film, and vice-versa.?® This effect of elastic mismatch is shown microscopically in
Figure 7.3a, where samples of 40 kDa poly(3-hexylthiophene) (P3HT) exhibit greater crack densities at
20% applied strain when supported by more compliant PDMS substrates.>® Adhesion between the film
and the substrate is also an important consideration regarding substrate effects on the mechanical prop-
erties of thin films. For plastically deformable films of metal supported by polymeric foils, an adhesion
layer suppresses the formation and propagation of microcracks.” Moreover, semiconducting polymer
films exhibit a significant increase in extensibility upon encapsulation, which is the result of forced
Poisson compression and stress delocalization over the films by the encapsulating substrate.’?

7.4.2 Effects of Film Thickness

Thickness affects virtually all aspects of thin-film behavior, especially for thicknesses below 100 nm
(Figure 7.3b and Figure 7.3¢c). The dependence of thermomechanical behavior on film thickness is com-
plex. The contribution of a plastic zone that dissipates elastic strain energy at crack tips** is appreciable
in materials of high molecular weight (Figure 7.3b), which exhibit a significant density of entangle-
ments.”>* The volume of this plastic zone may be geometrically confined by elastic boundary layers
(e.g., adjacent layers in a device stack) as the film is made thinner. A small plastic zone, however, does
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FIGURE 7.3 Physical parameters affecting the measurement of mechanical properties. (a) Optical micrographs
showing samples of 40 kDa P3HT with varying crack densities on PDMS at 20% applied strain; the larger the
PDMS curing ratio (base:crosslinker), the more compliant the PDMS, and thus the greater the elastic mismatch.
Reproduced with permission from Rodriquez et al., ACS Appl. Mater. Interfaces 2017, 9, 8855-8862. Copyright 2017,
American Chemical Society. (b) Dependence of the cohesive energy, G, of a bulk-heterojunction layer (regioregular
P3HT:[60]PCBM) on film thickness, h, and P3HT molecular weight. Reproduced with permission from Bruner etal.,
Macromolecules 2014, 47, 1117-1121. Copyright 2014, American Chemical Society. (c) Glass transition temperature,
T, of PCDTBT as a function of film thickness; the regression** is based on a phenomenological two-layer model.
Reproduced with permission from Wang et al., Eur. Phys. J. E. Soft Matter 2012, 35, 9807. Copyright 2012, Springer.
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little to dissipate mechanical stress through plastic flow, and thus the material ruptures more readily
in thinner films than for thicker films, at least for polymers of high molecular weight.!>33 The cohesive
energy of polymers of high molecular weight is therefore strongly dependent on thickness, as shown
in Figure 7.3b, due to significant plastic flow at the tips of cracks that initiate in pre-existing defects.®
Indeed, thicker films of a particular semiconducting polymer of high molecular weight exhibit greater
ductility compared to thinner ones.*!> Specifically, there is a marked decrease in the tendency for cracks
to propagate in thicker films during tensile loading.

For ultrathin (<100 nm) films, however, the appearance of cracks may be suppressed for a different
reason: namely increased mobility of polymer chains and reduced density of entanglements due to skin-
depth effects. The contribution of a mechanically soft, loosely entangled network of chains, which exists
near the surface of polymer films, becomes more prominent as the film is thinned below 100 nm.3¢-3
This free surface in a geometrically confined polymer film depresses the T, due to the enhanced dynam-
ics and segmental mobility of polymer chains (see Figure 7.3c for the case of PCDTBT).* The loosely
entangled network of chains in turn lowers the elastic modulus of the film, reduces its fracture strength,
and increases (albeit slightly) its strain at fracture.®® These skin-depth effects can occur in any polymer
film, brittle or ductile, regardless of whether or not a plastic zone exists. Two conclusions can thus be
drawn: first, a reduction in intermolecular entanglement density near the free surface of a thinned film
enhances segmental mobility and weakens intermolecular forces, both of which soften the material.
Second, highly mobile chains at the free surface can effectively relieve mechanical stress induced during
elongation.

7.4.3 Effects of Strain Rate

In stress-strain measurements of polymers, higher strain rates generally result in greater apparent elas-
tic moduli.>® Consistent with previous work on non-conjugated polymers,**#! films of 63 kDa P3HT were
tested at two strainrates, and the greater strain rate produced alarger apparent elastic modulus (Figure 7.4).
An increasing strain rate relative to the timescales of chain reptation results in an effective stiffening of
the material and thus an increase in its elastic modulus.!
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FIGURE7.4 Effects of strain rate on the mechanical properties of semiconducting polymers. Stress—strain curves
of thin films of 63 kDa P3HT obtained by film-on-water tensile testing at two different strain rates; the pull test
performed at the greater strain rate resulted in a larger apparent elastic modulus. Reproduced with permission
from Rodriquez et al., ACS Appl. Mater. Interfaces 2017, 9, 8855-8862. Copyright 2017, American Chemical Society.
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7.5 Effects of Molecular Structure and Microstructure

The molecular weight, length of solubilizing alkyl side chains, and chemical structure of the backbone
all influence the plasticity of thin films of semiconducting polymers. The mechanical properties of these
materials are also affected by the morphology and packing structure in the solid state, which can be
influenced strongly by processing conditions and the kinetics of solidification of films cast from solution.

7.5.1 Role of Molecular Weight

The degree of polymerization of a polymer is quantified by its molecular weight, the distribution of
which is reported as either a weight-average, M,,, or a number-average, M,, molecular weight. Typically,
M, is a more realistic predictor of the mechanical properties of polymers because it is weighted toward
the degrees of polymerization that make up the largest weight fraction of the sample. Molecular weight
has a large influence on the cohesion and plasticity of thin films of semiconducting polymers.3**> For
example, the cohesive energy of P3HT:[60]PCBM bulk heterojunction solar cells increases with increas-
ing molecular weight of P3HT (Figure 7.3b) due to plastic dissipation of elastic strain energy.’> Higher
molecular weights can also increase the extensibility of poly(3-alkylthiophene)s (P3ATs), which has
been measured in the form of a bulk tape (Figure 7.5a)*? and as a thin film (Figure 7.5b and Figure 7.5¢).*°
The increase in plasticity and cohesion of the films with molecular weight is due to an increase in the

a b

25
bulk tensile test 200} Buckle film-on-elastomer
Yield Point
20 CrI:ck c(r’llsnet methods
Py o, PDMS substrate
© © 150 F
o
= 15 < - 40
% i B e -« 63
@ 10 ] 100 F
@ & V[ ym————————- « 80
5 50F
5 Moleculaf weight of P3|.-IT, M, (kDa) 5 Molecular weight of P3HT, M, (kDa)
0 R N R R
0 1.0 s 2.0 3.0 00 01 02 03 04 05
train .
c d Strain
25

% film-on-water
20 tensile test

Stress (MPa)

Molecular weight of P3HT, M, (kDa)

%.O 02 04 06 08 10 1.2
Strain

FIGURE 7.5 Role of molecular weight on the mechanical properties of P3HT. (a) Bulk tensile testing of P3HT
tapes with different molecular weights that were solidified from a melt phase. Reproduced with permission from
Koch et al., Prog. Polym. Sci. 2013, 38, 1978-1989. Copyright 2013, Elsevier. (b) Film-on-elastomer methods and
(c) film-on-water tensile testing of thin films of P3HT with different molecular weights. Reproduced with permission
from Rodriquez et al., ACS Appl. Mater. Interfaces 2017, 9, 8855-8862. Copyright 2017, American Chemical Society.
(d) Representation of an interior kink that results in an entanglement between two polymer chains. Reproduced
with permission from Root et al., Energy Environ. Sci. 2016, 10, 558-569. Copyright 2017, Royal Society of Chemistry.
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density of entanglements. The density of entanglements is proportional to the number of interior kinks
(Figure 7.5d) in the chains, which increases with degree of polymerization.**#4 In a theoretical frame-
work, an interior kink occurs at the intersection of the primitive paths of entangled polymer chains.
Entanglements raise the energy needed for frictional pullout.® In general, semiconducting polymers
above a critical molecular weight (M, = 10 kDa for P3HT in principle*’) will exhibit greater viscosity,
ultimate strength, toughness, and extensibility due to the entanglement of chains compared to the same
material below its M_.*?

7.5.2 Role of Alkyl Side Chains

The unsubstituted n-conjugated main chain of semiconducting polymers is not readily soluble. To ren-
der these materials soluble, alkyl side chains are typically attached. Side chains confer solubility by inter-
rupting van der Waals interactions between main chains and by permitting greater entropic freedom of
the polymer in solution. These side chains also influence the thermomechanical properties. In P3ATs,
longer alkyl side chains increase the crack-onset strain and lower the elastic modulus (Figure 7.6).1647
In fact, the steepest decrease in modulus with increasing side-chain length, #, coincides with the point
at which the T, drops well below room temperature (~25°C), which occurs between n = 6 and n = 7 for
P3ATs.*648 (The T, of P3HT appears to be a borderline case and has been reported to span a range of
temperatures, from approximately -16°C to 35°C.”) Since the side chains of P3ATs typically do not inter-
digitate in the solid state,'>* increased length of side chains results in weaker van der Waals interactions
between polymer chains.*® This reduction in intermolecular bond strength allows for greater disorder in
the system and ability to dissipate mechanical stress. In a similar manner, branched side chains promote
microstructural disorder due to steric hindrance and increased free volume between neighboring main
chains,* which decreases the crystalline correlation lengths of both 7—=n stacking and lamellar spacing.™

7.5.3 Role of Molecular Structure and Backbone Rigidity

Molecular ordering in semiconducting polymers, particularly intermolecular ordering induced by
interdigitation of side chains and crystallization, results in increased elastic moduli and decreased
strains at fracture.*>>? The rigidity of the backbone can affect the mechanical properties of semiconduct-
ing polymers;? specifically, inflexible backbones may be expected to reduce the flexibility of thin films.

25— . ; : .
4 Pure P3AT |
(CHCI,, As-Cast) . 1.25
©
= 1 % 1.00
g T4 near room 1
5 temperature 2 075}
3 15F : 3
g / = o0}
= 'S 1
2 10t . S
@ 2 0.25¢ t = ;
()
[
ost % 000l
’ & T~ & O P 2P
PR S
0.0 7 : : t F ¢

4 6 8 10 12
Alkyl Side-Chain Length (n)

FIGURE 7.6 Role of the length of alkyl side chains on the tensile modulus of P3ATs. The greatest deviation in
modulus occurs when the length of alkyl side chains is increased from n = 6 to n = 7, which is most likely due
to the depression of T, below room temperature for n = 6. Reproduced with permission from Savagatrup et al,
Macromolecules 2014, 47,1981-1992. Copyright 2014, American Chemical Society.
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Indeed, a correlation between rigid backbones and stiffer films is often observed when incorporating
fused rings.?>> In contrast, polymer chains can be made more flexible by adding aliphatic spacers to
the backbone, which disrupt conjugation and allow for greater exploration of conformational space.
Changes in molecular properties by modification of the backbone, however, can altogether change the
packing structure. Effects of backbone rigidity are thus often partially or entirely overwhelmed by com-
peting effects of microstructural packing (Figure 7.7).5-% Because of this interplay of effects, the greatest
role that backbone rigidity plays on the mechanical properties of semiconducting polymers is through
modulation of the T, This role is especially prominent when the glass transition occurs below room
temperature.

7.5.4 Role of Intermolecular Packing

Interdigitation of side chains, and the resulting inhibition of molecular motion, can embrittle semicon-
ducting polymers.'>2>5¢ The consequences of interdigitation are seen most clearly in the case of P3HT,
the side chains of which can interdigitate upon solvent annealing (called “form II”).%5” The interdigi-
tated form of P3HT is more brittle than the non-interdigitated form (“form I”).# Branched side chains
generally inhibit interdigitation, and non-interdigitated microstructures exhibit decreased elastic mod-
ulus and increased crack-onset strain.?® The effect of order in a film, especially as a result of increased
regioregularity (as in P3ATs), is generally to stiffen and embrittle.>

7.6 Glass Transition Temperature and Measurement Techniques

The viscosity of a solid polymer controls the time scales that are required for reorganization of chains
in the amorphous domains. These time scales decrease exponentially with increasing temperature, par-
ticularly as the sample passes through the glass transition, characterized by T, (generally a small range
of temperatures), for which several measurement techniques exist.

7.6.1 The Glass Transition in Semiconducting Polymers

As temperature is increased, polymers can reversibly pass to a progressively more fluid and rubbery
state, which results in changes in density, viscosity, and refractive index. These changes occur due to
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FIGURE 7.7 Conjugation-break spacer (CBS) in a DPP-based polymer and the impact on the mechanical proper-
ties of thin films. (a) Chemical structure of the DPP-x polymers bearing a CBS in varying proportions; x represents
the percentage of the CBS added, with x = 0 corresponding to full rigidity and x = 100 corresponding to full flexibil-
ity along the backbone. (b) Mechanical properties and microstructural data of the DPP-x polymers; measurements
of tensile moduli and crack-onset strains show no clear trends with increasing percentage of the CBS, as changes
in packing structure overshadow decreased backbone rigidity. Reproduced with permission from Savagatrup et al.,
Macromol. Rapid Commun. 2016, 27, 1623-1628. Copyright 2016, Wiley-VCH Verlag, GmbH & Co. KGaA.
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relaxation of the main chain (thermally activated translational and rotational modes of motion).”*
The nominal temperature that marks the onset of this second-order, non-isothermal phase transition
is defined as T,. At operating temperatures well below the T,, segmental relaxation is prohibited on
experimental time scales, such that existing chain conformations are frozen in metastable states.”** The
mechanical degradation of thin films (e.g., during tensile deformation) can be mitigated by decreasing
the T,,5%¢! which is achieved by increasing the length of side chains (see Section 7.5.2)."” In Figure 7.8,
strains of 10% were applied to films of poly(3-hexylthiophene) and poly(3-dodecylthiophene) (P3DDT)
blended with [6,6]-phenyl Cg, butyric acid methyl ester ([60]PCBM). Upon visual inspection, major
cracks on the surface of the P3HT:[60]PCBM film, though not on the surface of the P3DDT:[60]PCBM
film, can be observed.”” Increased ductility in the latter film is due to a reduced T, and thus improved
resistance to decohesion through viscoelastic dissipation of mechanical energy.4¢

At operating temperatures well above the T,, segmental relaxation processes and the associated rate
of intermolecular rearrangement can occur on experimentally relevant time scales that decrease expo-
nentially with increasing temperature according to the Vogel-Fulcher law.”8 The resulting decrease in
viscosity above the T, allows polymer chains to reorganize and chain segments to relax towards ther-
modynamic equilibrium.**** Above the T, thin films of semiconducting polymers can exhibit plastic
deformation, which aids in accommodating mechanical stresses and dissipating elastic strain energy.”*2
Furthermore, temperature-dependent phenomena in polymeric materials, such as viscoelastic stress
relaxation, phase separation, and crystallization, occur more readily above the T,.

7.6.2 Techniques to Measure the T, of Semiconducting Polymers

The T, is a critical property of materials that is difficult to determine for thin films of semiconduct-
ing polymers, despite its importance in predicting the thermal and mechanical stabilities of these
materials. There are several techniques to measure the T, of semiconducting polymers, including
differential scanning calorimetry (DSC),* dynamic mechanical analysis (DMA),* variable-temper-
ature ellipsometry (VTE),° and ultraviolet-visible (UV-vis) spectroscopy.” DSC is performed by
heating (or cooling) a sample along with an inert reference and measuring the difference in heat
flow (Figure 7.9a, left). This difference, typically recorded as a function of temperature (Figure 7.9a,
right), arises due to the release or absorption of heat during phase transitions such as crystalliza-
tion (release) or melting (absorption).” As shown in Figure 7.9a, the glass transition corresponds
to a change in heat capacity of the sample,” i.e., a change in the slope of its DSC thermogram. The
sensitivity of a DSC measurement could be amplified by increasing the scan rate, for instance to
detect indistinct signals of weak thermal transitions. Conventional DSC setups, however, are limited
to bulk samples and cannot be used to study thin films and their thermal properties, which exhibit
a non-trivial dependence on thickness below a critical threshold (Figure 7.3¢) due to geometric con-
finement and interfacial effects.>¢8
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FIGURE 7.8 Variation in the mechanical response of films of polymer-fullerene composites with T,. Optical
micrographs of thin films of (a) P3HT:[60]PCBM and (b) P3DDT:[60]PCBM on PDMS under an applied strain of
10%. Reproduced with permission from Savagatrup et al., Adv. Funct. Mater. 2014, 24, 1169-1181. Copyright 2014,
Wiley-VCH Verlag, GmbH & Co. KGaA.
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FIGURE7.9 Experimental techniques to measure the T, of a semiconducting polymer. (a, left) Schematic illustrat-
ing the main constituents of an original power compensation DSC; PRT stands for platinum resistance thermometer.
Reproduced with permission from Gaisford et al., Royal Society of Chemistry, 2016. Copyright 2016, Royal Society of
Chemistry. (a, right) Second DSC heating and cooling scans of a liquid-crystalline polyfluorene derivative (APFO-3)
performed in an N, atmosphere at different scan rates. Reproduced with permission from Miiller, Chem. Mater.
2015, 27, 2740-2754. Copyright 2015, American Chemical Society. (b, left) A typical ellipsometer comprises a polar-
izer, compensator, sample, and analyzer; a planar sample is assumed, and the angle of incidence is denoted by ¢.
Reproduced with permission from Tompkins et al., Springer, 2005. Copyright 2005, Elsevier. (b, right) Temperature
dependence of the tan ¥ and h of a thin film of APFO-3 measured with VTE; the tan ¥ was measured at a wavelength
of 800 nm, near which APFO-3 is optically transparent. Reproduced with permission from Miiller et al., J. Mater.
Chem. 2011, 21,10676. Copyright 2011, Royal Society of Chemistry. (c) Measuring the T, with UV-vis absorption spec-
troscopy involves (left) subjecting a thin film to a thermal cycling protocol, (center) recording the UV—vis spectrum of
the film at ambient temperature between successive cycles, and (right) processing the spectra as a plot of the DM.;. ver-
sus annealing temperature using Equation (7.6), the graph of which shows a distinct increase near the T,. Reproduced
with permission from Root et al., Chem. Mater. 2017, 29, 2646-2654. Copyright 2017, American Chemical Society.
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Alternatively, VTE may be used to determine the T, of a thin film by examining the dependence
of the film’s refractive index, n, and thickness, /i, on temperature. Ellipsometry involves measuring
the change in polarization—quantified by the amplitude ratio and phase shift—of elliptically polarized
electromagnetic radiation reflected from the surface of a sample (Figure 7.9b, left). Ellipsometry is also
used to noninvasively characterize the refractive indices and thicknesses of thin films of polymers. The
thermal transitions of these materials can be quantified using an ellipsometer in conjunction with a
temperature-controlled stage. For this measurement, the amplitude ratio (or ellipsometric angle), tan ¥,
is evaluated as a function of temperature,® which then allows determination of the refractive index and
thickness as functions of temperature. The T, can be approximated as a change in the slope of a graph
of refractive index or thickness versus temperature,’”® which is related to the expansion of free volume
above the T, and, concurrently, an abrupt change in the volumetric coefficient of thermal expansion a;:

o = _l(dp) _ _V(d(’“/v)) (74)
p\ dT m dr

where p is density and m is the mass of a thin film of volume V.°¢ Assuming that a laterally constrained
film of a given area has a fixed mass of polymer, Equation (7.4) may be rewritten as

d(1/h)) 1(dh
av = —h =—| — (7.5)
()il
using the chain rule. Therefore, an abrupt change in o, at the T, corresponds to a distinct variation in the
rate of change of h with T, as shown in Figure 7.9b (right). Although the T, of thin films of semiconduct-
ing polymers can be extracted from the raw data, ellipsometric systems equipped with temperature-

controlled stages are often expensive and not widely available.
A more widely available measurement technique that allows for the determination of the T, uses a

hot plate in an N,-atmosphere glovebox and a UV-vis spectrometer. UV-vis spectroscopy normally
involves radiation with wavelengths between 200 and 800 nm. Irradiated molecules containing n- or
non-bonding electrons can absorb the energy to promote electronic transitions: the smaller the band-
gap, the less energy is needed to excite electrons, and thus the longer the wavelength of radiation they
absorb. Thermal annealing of thin films of semiconducting polymers in the solid state can result in
self-assembly and aggregation into densely packed morphologies.”! The formation of such strong inter-
actions between chains can result in large redshifts>”? (i.e., an increase in wavelength) in the UV-vis
absorption spectrum because of a reduction in the optical bandgap. The magnitude of the redshift,
however, depends on the degree of order imposed on the polymer.”> Measurement of the T, with UV-vis
spectroscopy, therefore, works best for materials with a strong propensity to form ordered photophysical
aggregates upon thermal annealing. The T, of a thin film of semiconducting polymer could be measured
by quantifying the change in the absorption spectrum that results from a systematic protocol of thermal
annealing (Figure 7.9¢, left and center).” A deviation metric, DM, may then be defined as the sum of
the squared deviations in the absorbance between as-cast films (at room temperature, Ty) and annealed
films (at annealing temperature, T):

Amax
DMy = Y [l (M)~ (A)P (7.6)
Amin

and M\

and Iy, (7») and IT(X) are the normalized absorption intensities of the as-cast and annealed films,
respectively. Approaching the T,, a sharp increase in the slope of the DM when plotted against T occurs
because of the activation of chain motion in the solid state.® Figure 7.9¢c (right) illustrates the evolution
of the deviation metric as a function of annealing temperature for a thin film of poly(3-butylthiophene)

where A is the wavelength, A, ;. max ar€ the lower and upper bounds of the optical sweep, respectively,
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(P3BT)—the deviation metric shows a distinct increase near the T,. Rigorous bilinear regression analy-
sis based on a custom R*-maximization algorithm is recommended to accurately estimate the T, (such
an algorithm is available in an open-sourced format).’

7.7 Theoretical Modeling

From a theoretical perspective, semiconducting polymers represent a mechanically unique class of

polymers. The uniqueness arises in large part due to geometric constraints imposed by 7-conjugation
along the backbone. A theoretical foundation for describing semiconducting polymers is provided by
many of the models reported in the extensive body of literature on the mechanical behavior of non-
conjugated polymers. When considering mechanical properties, however, there are several attributes
specific to semiconducting polymers that distinguish them from their non-conjugated counterparts.
These attributes are a manifestation of nanoscale characteristics—such as the planarizing effects of
n-conjugation along the backbone and the flexibility of side chains—and device-level considerations—
such as film thickness and solid-state morphology. Existing theoretical treatments thus range from
atomistic molecular dynamics of mechanisms of nanoscale deformation to continuum-scale modeling
of the mechanical behavior of films of semicrystalline polymers.

7.7.1 Molecular Structure and Atomistic Simulations

The molecular structure of repeat units along a polymer chain is the first consideration for the overall
mechanical behavior. The static geometry of these repeat units can be computed approximately using
the well-developed numerical methods of quantum chemistry.”*”® While density functional theory
can yield reliable predictions of molecular geometry (Figure 7.10a), it falls short, in comparison to
perturbation-based methods, when it comes to calculations of energy.”*’”” Moreover, the methods of
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FIGURE 7.10 Theoretical and computational modeling of the mechanical properties of semiconducting poly-
mers. (a) [lustration showing the highest-occupied molecular orbital (HOMO) of a diketopyrrolopyrrole (DPP)
repeat unit obtained using density functional theory calculations. (b) Classical atomistic representation of a donor—
acceptor polymer comprising branched alkyl side chains. (c) Atomistic simulations of a bulk donor-acceptor poly-
mer under tensile strain; individual chains are colored distinctly. (d) A coarse-grained simulation of a P3HT film of
high molecular weight subjected to tensile loading; polymer chains are colored based on their relative virial stress.
(e) Multi-phase finite element simulation of a semicrystalline film of P3HT under tensile strain; the color scheme
represents normalized normal stress. Reproduced with permission from Zhao et al., J. Polym. Sci., Part B: Polym.
Phys. 2016, 54, 896-907. Copyright 2016, Wiley Periodicals, Inc.
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computational quantum mechanics are too computationally expensive to describe the dynamics of even
oligomeric chain segments, such that classical atomistic molecular dynamics must be employed.

Atomistic molecular dynamics simulations of semiconducting polymers generally use semi-empirical
molecular force fields.3*® For conjugated polymers with complex backbone structures, many of the spe-
cific geometric, electrostatic, and energetic parameters must be obtained using quantum mechanical
methods.””7 These parameters are typically associated with the planarizing intramolecular forces that
exist between conjugated heterocyclic ring structures, such as dihedral rotations and bond stretches. The
forces that control such molecular rotations are important in determining the time and temperature
scales of stress relaxation through motion of polymer chains. These forces also influence the overall con-
formational structure of polymer chains, which subsequently determines the degree of their entangle-
ment. Atomistic models based on classical, semi-empirical force fields are only capable of describing
ground-state dynamics, neglecting mechanical effects of higher order that may arise due to excited-state
and charge-transfer processes. (Mechanical effects of higher order include changes in molecular geom-
etry that minimize electrostatic potential energy in the presence of charged species: namely electrons and
holes. Ground-state dynamics, however, usually overwhelm these effects.) Furthermore, these models do
not allow for the possibility of scission of chemical bonds; such a description is difficult from a numerical
perspective because breakage of covalent bonds is associated with a large release of energy. Nevertheless,
atomistic models provide practical predictions of the conformational preferences (Figure 7.10b), nanoscale
packing features, and tensile behavior of complex donor-acceptor polymers (Figure 7.10c).

7.7.2 Polymer-Chain Size and Phase Behavior

The next length scale of interest is the size of polymer chains, which, combined with the chemical
structure of the monomer, determines the overall phase behavior during solution casting. Conjugated
polymers embody a wide range of behaviors in the solution phase, among which is the formation of
single-chain and multi-chain aggregates.”*$2-% The tendency to form such aggregates is important with
regard to the mechanical stability of thin films processed from solution, as it leads to the creation of
voids and lower densities of entanglement in the solid state.® This outcome is especially true for materials
that undergo a glass transition well above room temperature and lack molecular mechanisms to relax
kinetically trapped conformations without treatment by thermal annealing or solvent vapor. The solid-
state morphology and tensile behavior of conjugated homopolymers, such as P3HT,*>* and numerous
low-bandgap, alternating copolymers® have been studied in atomistic detail using modified force fields.
An illustration of one such atomistic simulation is shown in Figure 7.10c.

Atomistic molecular dynamics simulations employ periodic boundary conditions and are thus used
to model bulk samples. The stress—strain behavior of a bulk sample can be computed by imposing a
constant strain rate in one dimension of the simulation box, and then by calculating the bulk stress in
the axial dimension as the sum of all virial stresses acting on the particles. Atomistic simulations also
provide predictions of packing at the molecular scale, tendency for entanglement, and mechanisms of
deformation in semiconducting polymers of low molecular weight under tension. In addition, these sim-
ulations can be used to predict thermal properties, such as the glass transition temperature, by quench-
ing a system from the melt phase and determining the temperature at which the coefficient of thermal
expansion exhibits a change in slope. Atomistic simulations, however, do not consider any aspects of
casting from solution and cannot be run long enough for crystallization to occur. In this regard, atom-
istic simulations can only be used to model the amorphous phase that is obtained by quenching from
an equilibrated melt phase.

7.7.3 Coarse-Grained Simulations and Continuum-Based Methods

Although atomistic models can be used to describe the dynamics and mechanical behavior of systems of
low molecular weight, the large length and time scales associated with polymers of high molecular weight



Mechanical Properties of Semiconducting Polymers 267

make these simulations computationally prohibitive. For such large scales, coarse-grained models must
be employed. In these models of comparatively low resolution, groups of atoms are mapped to “beads”
that have prescribed interactions and are optimized to match the results of atomistic simulations in
either a melt or solution phase.®”-4 This coarse-graining procedure allows for the simulation of solution
casting and may also be used to model a thin film in its entirety, such as the one shown in Figure 7.10d.
These models have been employed to predict the mechanical behavior of P3ATs of high molecular
weight and composite systems with fullerene molecules. Such simulations show reliable predictions
of the tensile modulus, Poisson ratio, and glass transition temperature.*3* In addition, alignment of
polymer chains due to plastic deformation and stress concentration within chains can be calculated
(see Figure 7.10d). Finally, important theoretical properties, such as the density of entanglements, can be
computed directly from coarse-grained simulations using algorithms of primitive-path analysis devel-
oped for non-conjugated polymers.***-7 One particularly insightful observation that emerged from
these simulations is that P3HT chains tend to fold on themselves when mixed with fullerenes.!® This
folding leads to a reduction in entanglement between chains and, consequently, a decrease in the tough-
ness of the composite material.

For simulations of even larger scale that include bulk, semicrystalline domains, continuum-based
methods must be employed. Finite element simulations consisting of three-phase heterogeneous models
for P3HT have been developed to account for the crystallinity of ordered regions, elasto-viscoplasticity
of amorphous regions, and even hypo-elasticity of tie chains between interconnected crystalline
domains.”**® A typical simulation output that depicts the concentration of stress in a representative
semicrystalline morphology is shown in Figure 7.10e. Although these simulations can provide detailed
mechanisms of deformation that agree well with experiment, they require numerous mechanical
parameters that are not known for most semiconducting polymers.

7.8 Composite Systems

The importance of composite systems is exemplified by the bulk heterojunction (BHJ)—an intimate
blend of two or more semiconducting components—which functions as the active layer in organic solar
cells. This structure introduces additional challenges to understanding the deformability of semicon-
ducting polymers because the mechanical properties of a composite depend not only on those of its
constituents but also on complex interactions between these components.

7.8.1 Effects of Molecular Mixing

In a BHJ, the electron donor is typically a semiconducting polymer and the electron acceptor may be a
fullerene derivative.”® In electron-donating polymers, side chains can have a high attachment density
such as in P3HT, where each thiophene ring has a side chain attached. On the other hand, side chains
could be sparse such as in poly(2,5-bis(3-tetradecyllthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT),
where individual thiophene rings with side chains attached are separated by naked thienothiophene
units. In polymers that exhibit lower attachment densities of side chains, greater free volume exists,
which allows for the intercalation of fullerene crystals between the side chains. This intercalation
results in a mixed, bimolecular blend where fullerene molecules can directly interact with the polymer
backbone.!?

Whenmixedwith [60]PCBM,P3ATsgenerallydonotallowfor [6(0]PCBMintercalation,whereasPBTTTs
and poly(terthiophenes) (e.g., poly-2,2":5',2"-(3,3"-dihexyl-terthiophene) (PT2T)) do (Figure 7.11a).1%
P3AT:fullerene blends, mixed in ratios of 1:1, form ternary morphologies that comprise fullerene-rich
domains, polymer-rich aggregates, and a mixed, amorphous phase.'”> Moreover, PBTTT:fullerene
blends form a bimolecular phase that is well-ordered (i.e., bimolecular crystallites),'> while the bimo-
lecular phase of PT2T:fullerene blends is disordered. The latter may be inferred based on the disap-
pearance of the vibronic peaks in the UV-vis absorption spectrum of PT2T upon adding [60]PCBM,
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FIGURE 7.11 Effects of fullerene mixing on semiconducting polymers. (a) Cq, can readily intercalate along the
backbone of polymers that are structurally similar to PT2T, which has side chains that are sparsely attached, but it
cannot intercalate along the backbone of polymers that are structurally similar to P3ATs, which have side chains
that are densely attached. Reproduced with permission from Koppe et al., Adv. Funct. Mater. 2007, 17, 1371-1376.
Copyright 2007, Wiley-VCH Verlag, GmbH & Co. KGaA. (b) UV-vis absorption spectra of neat PT2T and PT2T:[60]
PCBM (both thermally annealed) showing the disruption of PT2T ordering—as suggested by the complete van-
ishing of the vibronic peaks—upon addition of [60]JPCBM. (c) Linear correlation between the elastic moduli of
polymer:fullerene blends and those of the corresponding neat polymers. Reproduced with permission from Printz
etal., Sol. Energy Mater. Sol. Cells 2015, 134, 64-72. Copyright 2015, Elsevier.
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as shown in Figure 7.11b.1%4 (Vibronic peaks in a UV-vis absorption spectrum are indicative of polymer
aggregation, such that their disappearance corresponds to a disruption in microstructural order.) An
important consequence of molecular mixing is thus that the elastic moduli of polymer:fullerene blends
are lower than simple averages of the moduli of the individual components. As shown in Figure 7.11c,
a linear correlation may nevertheless be observed between the moduli of blends and those of the cor-
responding neat polymers.1

7.8.2 Polymer-Fullerene Composites

Methanofullerenes are fullerene derivatives commonly used as the electron-accepting component of a
BHJ and, mechanically, are extremely brittle van der Waals solids. In general, fullerenes are produced as
a mixture of various structures, though their separation is a resource-intensive and energetically expen-
sive process.'®® Two common methanofullerenes are [60]PCBM, which comprises a spherical 60-carbon
fullerene and a solubilizing side chain, and [6,6]-phenyl C,, butyric acid methyl ester ([70]PCBM), which
comprises an ovoidal 70-carbon fullerene but has the same solubilizing side chain as in [60]PCBM
(Figure 7.12a). The former packs efficiently and readily crystallizes to the point that it fractures at very
low strain. On the other hand, [70]PCBM can withstand slightly more deformation because it packs
less efficiently and is morphologically hindered due to its ovoidal shape and numerous isomers." The
mechanical stability of organic semiconductors, however, is determined not only by molecular structure
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FIGURE7.12 Effects of fullerene mixing on semiconducting polymers. (a) Molecular structures of [60]PCBM and
[70]PCBM,; the latter is predominantly a mixture of three different isomers. (b) Tensile moduli of polymer:fullerene
composites as functions of the relative concentrations of [60]PCBM and [70]PCBM. Data for pure fullerene films and
their respective composites, as-cast (AC) and after thermal annealing (AN), are included. Compared to composites
with separated fullerenes, composites with mixed fullerenes exhibit lower elastic moduli and (c) higher crack-onset
strains. Reproduced with permission from Savagatrup et al., Chem. Mater. 2015, 27, 3902-3911. Copyright 2015,
American Chemical Society.



270 Conjugated Polymers

but also by the solid-state morphology of the film.1” Methanofullerenes behave as anti-plasticizers when
mixed with semiconducting polymers by increasing the glass transition temperature and elastic modu-
lus and by reducing the strain at fracture and cohesive energy.*!¢19 These effects on the thermomechan-
ical properties of semiconducting polymers all result in more fragile polymer:fullerene systems overall.

The detrimental effects that [60]PCBM and [70]PCBM have on the mechanical performance of semi-
conducting polymers indicate that these fullerene derivatives, individually, are far from ideal electron
acceptors for low-cost applications that require mechanical durability. Nonetheless, incompletely sepa-
rated fullerenes combine the advantage of a lower embodied energy—i.e., the total input of energy for
synthesis and processing of fullerenes—with a reduction in modulus and an increase in crack-onset
strain.!” Increases in compliance and extensibility, as shown in Figure 7.12b and Figure 7.12¢, can be
attributed to synergy between the inefficient packing of fullerene molecules in fullerene-rich domains
and a reduction in polymer aggregation.!’ BH]J blends that comprise incompletely separated fullerenes,
though still stiffer and more brittle than the polymeric component alone, exhibit greater deformability
compared to BHJs consisting of completely separated fullerenes.’® Thermal annealing of these blends,
particularly those comprising polythiophene-based polymers, induces molecular aggregation and crys-
tallization.”? This improved molecular ordering, however, stiffens and embrittles the films, as demon-
strated in Figure 7.12b and Figure 7.12¢.4¢:106

7.9 Conclusion and Outlook

Mechanical deformability is the characteristic that enables most touted advantages of organic electronic
materials. Although the field of flexible and robust electronics is nascent with as of yet few commercial-
ized products, significant efforts to determine how chemical structure and microstructural order influ-
ence the mechanical properties of semiconducting polymers have already been made. The mechanical
properties of thin films of semiconducting polymers depend on molecular structure and also on molec-
ular packing in the solid state. Indeed, a recurring finding, both experimentally and computationally, is
that the thermomechanical properties of semiconducting polymers are controlled by conditions of solu-
tion and thermal processing, which directly influence crystallinity and nanoscale ordering. A complete
understanding of the mechanical properties of these materials entails developing a framework for how
specific molecular structures assemble in solution and ultimately in the solid state.

Determining the mechanical properties of thin films has proven difficult in numerous ways, primar-
ily due to the impracticality of handling these materials in freestanding form. These challenges have
led to the development of broadly applicable approaches to metrology, such as the film-on-elastomer
and film-on-water methods, that can be readily applied to semiconducting polymers. Although these
techniques allow for facile determination of the mechanical properties of thin films, the results of such
mechanical analyses are dependent on the technique and testing conditions used. Another typical com-
plication in characterizing the mechanical properties of thin films of semiconducting polymer lies in
the diversity of the fracture behavior that these materials exhibit. In addition, the mechanics that govern
ductile fracture—compared to brittle fracture—are more sophisticated and less well understood due to
the occurrence of plastic flow during events of ductile fracture.

A deeper understanding of the mechanical properties of semiconducting polymers will enable the
production of organic electronics that are mechanically robust and resistant to fracture. For these
devices to be a technological success, however, efforts to enhance their thermomechanical properties
and long-term reliability against mechanical deformation must not come second to optimizing elec-
tronic performance. Instead, the primary objective in developing robust and efficient devices should be
to co-optimize the mechanical and optoelectronic properties of semiconducting polymers. For this pur-
pose, computational methods and theoretical modeling are expected to play a crucial role in facilitat-
ing the co-optimization of mechanical and electronic properties by generating experimentally testable
hypotheses. These efforts directed toward an improved understanding of the thermomechanical prop-
erties of semiconducting polymers may also reveal ways in which to create materials with properties
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inspired by biological tissue, including simultaneous toughness and compliance, degradability, and the
capacity to self-repair.
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