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ABSTRACT: Assessment of liquid intake is necessary to obtain a complete
picture of an individual’s hydration status. Measurements using state-of-the-
art wearable devices have been demonstrated, but none of these devices have
combined high sensitivity, unobtrusiveness, and automated estimation of
volume, i.e., using machine learning. Such a capability would have immense
value in a variety of medical contexts, such as monitoring patients with
dysphagia or the performance of athletes. Here, an epidermal sensor platform
is combined with machine learning to measure swallowed liquid volume
based on signals obtained from the surface of the skin. The key component
of the device is a composite piezoresistive sensor consisting of single-layer
graphene decorated with metallic nanoislands and coated with a highly
p l a s t i c i z e d f o rm o f t h e conduc t i v e po l yme r po l y ( 3 , 4 -
ethylenedioxythiophene):poly(styrenesuflonate) (PEDOT:PSS). Surface
electromyography (sEMG) signals obtained with conventional electrodes are used in concert with the strain measurements. The
use of strain and sEMG measurements together both (1) improve the accuracy of estimated volumes and (2) permit the
differentiation of swallowing from motion artifacts. In a cohort consisting of 11 participants, the combined measurements of strain
and sEMGprocessed by the machine learning algorithmwere able to estimate unknown swallowed volumes cumulatively
between 5 and 30 mL of water with greater than 92% accuracy. Ultimately, this system holds promise for numerous applications in
sports medicine, rehabilitation, and the detection of nascent dysfunction in swallowing.
KEYWORDS: wearable electronics, strain sensor, epidermal, graphene, machine learning, nanostructures

■ INTRODUCTION

Despite the importance of water consumption and hydration
for homeostasis, there are no well-established methods of
reliably measuring the intake of liquids.1−4 Individuals from
many groups and with different conditions are at risk of
dehydration and its adverse effects, including children, the
elderly, adults living and working in hot climates, survivors of
head and neck cancer, and athletes. Graduated drinking bottles
provide a visual measure to track the consumed volume.
However, this method is highly unreliable because it does not
account for spillage and sharing. Moreover, it requires constant
attention from the subject or the examiner. There is thus a
need for a more practical, unobtrusive method of tracking the
swallowed volume, for example, by using a simple wearable
sensor. This paper describes an epidermal strain sensor,
combined with conventional surface electromyography
(sEMG) measurements, which can accurately measure
swallowed volumes based on the movement of the skin and
electrical activity of the swallowing muscles. When the data
obtained from this system is analyzed using a machine learning
algorithm, the system is capable of estimating cumulative
swallowed volume with an accuracy of more than 92%.

The literature encompasses a variety of methods to measure
swallowed volume, each of which is subject to various
constraints. For example, videofluoroscopy,5−8 endoscopy,9−11

and acoustic sensors (i.e., microphones)12,13 have the ability to
provide accurate measurements but require bulky, specialized
equipment and can rarely be performed during exercise or even
regular activity. Mobile devices offer the ability to obtain these
measurements without laboratory equipment. Over approx-
imately the last 15 years, the advent of epidermal sensors has
led to many impressive measurements of various physiological
quantities from different groups.14−25 Swallowing activity in
particular has been the subject of a subset of these studies.26−30

For example, a device described by Roh et al. was composed of
strain sensors based on a nanocomposite comprising single-
wall carbon nanotubes, a conductive polymer (PEDOT:PSS),
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and polyurethane. This device was able to distinguish events in
the neck associated with swallowing from movements of the
skin.31 By replacing the carbon nanotubes with silver
nanowires, the same group later demonstrated a self-powered
version of the device. This device, which was nearly
transparent owing to the use of silver nanowires, was able to
detect minute deflections of the skin, including those
associated with the motion of drinking water.32 Using a
different piezoresistive system, namely, an ionic liquid
embedded in an elastomer, Zhang et al. were able to capture
body motions ranging from 0.1 to 400% strain including the
swallowing behavior.33 However, these systems still required
the classification of signals by the (human) experimenters.
Moreover, the studies did not demonstrate automated,
quantitative estimation of the swallowed volume, an essential
metric for assessing hydration status.
Toward the goal of sensing and automated analysis of

swallowing activity, there have been a small number of
significant studies. Kim et al. described a wearable sensor that
included both sEMG electrodes and a commercial strain gauge
on the same patch and allowed remote data transmission and
power by connecting the patch to a wireless unit using a ribbon
cable and anisotropic conductive film.34 Previous studies in our
group by Ramiŕez et al. have reported a nanocomposite strain
sensor consisting of single-layer graphene decorated with
metallic nanoislands.35 When the strain data from the neck was
combined with signals obtained from commercial sEMG
electrodes, a machine learning algorithm was able to correctly
identify materials swallowed in a bolus on the basis of
consistency: water, yogurt, or a chewed cracker.35 Further-
more, this platform was also able to distinguish swallowing
patterns obtained from dysphagic and nondysphagic individ-
uals. Despite these successes, the device possessed a high
mechanical stiffness and was unable to stretch with natural
movements of the skin. To overcome barriers associated with
mechanical stiffness, including discomfort and strong aware-
ness of the participant, it was necessary to re-engineer the
nanocomposite strain gauge to make it compatible with a
stretchable, epidermal form factor. Moreover, in this study, the
automated classification using machine learning was based on
large differences in swallowing signals (i.e., water vs yogurt,
normal swallowing vs dysphagic swallowing). Ultimately,
monitoring hydration status would require classifying signals
with much finer variance.
Toward the goal of automated classification of swallowing

signals, Schultheiss et al. described an algorithm to reliably
detect the swallowing patterns from the other bodily
movements (head movements, talking, and chewing) using

two different measurements (sEMG and bioimpedance).36

After collecting both measurement signals during a swallow,
the authors used a combination of physiological criteria and
classifiers to accurately differentiate swallows from non-
swallows. Similarly, Farooq and Sazonov preferred to use
multiclass classification to lessen the influence of unwanted
motion artifacts, which confound the signals arising from
eating solid foods.37 The authors used data from a piezoelectric
strain sensor and an accelerometer and processed it using a
two-stage multiclass classification approach. The participants
were directed to eat solid food items in both sedentary and
active states (i.e., walking), and using their classification
method, the authors achieved a weighted average of precision
of 99.85% in detecting the solid food intake. In another
example, Shieh et al. used three separate sensorsa nasal
cannula, sEMG electrodes, and a force sensor (FSR) on the
neckto collect temporally resolved parameters during
swallowing and analyze the coordination between respiration
and swallowing.38 The authors designed an algorithm to detect
the onset and the offset of a swallow from the sEMG, nasal
airflow, and FSR sensors. Analysis of this combination of
measurements was able to differentiate the swallowing events
from respiration and find a correlation between them to
understand the effects of long-term smoking on swallowing
function. Despite these successes, it is nevertheless the case
that a nanomaterial-enabled, minimally obtrusive device has
never been coupled to a machine learning algorithm capable of
detecting minute differences in the swallowed volume.
Here, we describe a noninvasive, minimally obtrusive patch-

like sensor for monitoring the swallowed volume (Figure 1).
The sensor is worn on the neck and operates by recording
strain and sEMG signals, which originate from deformation of
the skin and activation of the swallowing muscles. The strain
sensor is composed of single-layer graphene decorated with a
film of metallic nanoislands and coated with a highly
plasticized conductive polymer. The graphene-nanoisland
film confers exceptional resolution, on the order of 0.0001%
strain, and sensitivity with a gauge factor of 100 for 0.0001%
strain (as shown in ref 39), while the highly plasticized
conductive polymer confers stretchability commensurate with
the skin, with a high dynamic range up to 10% strain (as
described in ref 40).39,40 In parallel, we developed a machine
learning algorithm using features from the strain signal to
estimate the volume of boluses of unknown size. The
application of an epidermal strain gauge and machine learning
to the problem of swallowing volume provides the opportunity
to differentiate signals from continuously varying biomechan-
ical cues in an automated manner. Ultimately, we expect

Figure 1. Materials and structure of the sensor. (a) Layer-by-layer representation of the strain sensor. (b) Scanning electron micrograph of the
AuNIs. (c) Chemical structures of the PEDOT:PSS, Triton-X, and DMSO, which make up the PEDOT:PSS dough.
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technologies such as this one to find broad use in many health-
related fields, including sports medicine, mobile healthcare,
and physical therapy.

■ EXPERIMENTAL DESIGN
Composition of the Strain Sensor. The strain sensor comprises

a sheet of monolayer graphene decorated with thermally evaporated
metallic nanoislands (Figure 1a). We formed a morphology of
metallic nanoislands by thermal evaporation of gold onto a film of
graphene on copper. The gold was evaporated at a rate of 0.03 Å/s
and the resulting nanoisland film had a low nominal thickness (8 nm).
The nanoisland structure forms as a consequence of a balance
between two characteristic energies: the binding energy of the gold
atom to the graphene (∼0.09 eV) and its diffusion barrier on
graphene (∼0.4 eV). Due to this interplay of energies, the evaporation
of gold on graphene is biased toward island-like growth at low
nominal thicknesses. The details of this process are discussed
elsewhere.39,41 The graphene−metal composite film is overlayed
with a thin film of a highly plasticized conductive polymer, poly(3,4-
ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The
thinness and stretchability of the sensor permits it to be transferred
onto many types of substrate.41 One potential issue associated with
most types of nanoparticle-based strain gauges is unwanted sensitivity
to temperature. In the previous work, Marin et al. found that it was
possible to achieve a near-zero temperature coefficient of resistance in
the type of graphene-metal composites explored here with the precise
tuning of the nominal thickness of the metal. In the case of gold, the
optimal thickness was 8 nm (Figure 1b).42 When used alone, the
graphene/gold nanoisland (Gr/AuNI) film is mechanically brittle and
fails at approximately 2% strain. To increase the dynamic range of the
sensor, we spray-coated them with the PEDOT:PSS “dough” (Figure
1c), a treatment that has been shown, in the previous work, to extend
the stretchability of the sensor up to approximately 80% (Figure 2).40

While the PEDOT:PSS “dough” has found wide use in bioelectronic
applications when used alone,43−48 its purpose here is to serve as a
conductive bridge between the nanoislands in the event of fracture of
the graphene film.40

Each one of the three materials of which our composite strain
sensor is composed exhibits sensitivity to strain individually. For
example, single-layer graphene has piezoresistive properties arising

from both a change in the electronic band structure due to the
elongation of C−C bonds and electron scattering caused by the
defects in graphene. Ultrathin metallic films show piezoresistive
properties due to nanoscale cracks that occur upon mechanical strain.
Finally, a highly plasticized conductive polymer film possesses
piezoresistivity at high strains due to the granular structure of the
film, where contractions and elongations can cause denser packing of
the grains and thus change the electrical conduction. The mechanisms
involved in sensing small strains for the Gr/AuNI structure are
hypothesized to be the scattering of electrons in the densely packed
regions, cracks formed in the film due to strain, and quantization of
electrons due to physical confinement in the thickness of the film. The
tunneling of electrons between unpercolated metal regions was ruled
out as the dominant mechanism for the Gr/AuNI sensors via the use
of hexagonal boron nitride as the 2D substrate instead of graphene.39

The addition of PEDOT:PSS “dough” added mechanical stability to
the Gr/AuNI film and strain sensitivity in a high strain region.40

Measurement of strain alone can be confounded by motion
artifacts: movement of the skin arising from coughing, sneezing, head
turning, yawning, and talking. By combining measurements of strain
with measurements of electrical muscle activity (sEMG), it is possible
to differentiate the true swallowing from the motion artifacts. While it
would be ideal to incorporate sEMG sensors on the same patch,
which contains the strain sensors, for the sake of experimental
simplicity, we decided to use commercial sEMG electrodes in this
prototype. For a further treatment of how sEMG and strain
measurements can be combined to eliminate motion artifacts by
machine learning, see Ramiŕez et al.35

Machine Learning Algorithm. We used machine learning for
two purposes in our study. The first was to differentiate swallowing
from artifacts of other types of motion. The second purpose was to
estimate the volume of the swallowed water. In our study, we
performed the swallowed-water-volume estimation through three
steps: signal processing, feature extraction, and algorithm develop-
ment. In the first step, we removed the noise in the sEMG and strain
raw data (Figure 3a). In the second step, we identified the features in
the swallow patterns in the strain data to build the volume estimation
algorithm. We did this by first selecting two peak points and two
valley points around the two swallowing peaks as fiducial points.
Using these selected fiducial points, the algorithm was able to

Figure 2. Schematic summary of the process used to fabricate the Gr/AuNI thin film coated with highly plasticized PEDOT:PSS.
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calculate additional features such as the durations, magnitudes, slopes,
curvatures, and kernels of the swallowing peaks, which represent the
physiology of the moving muscles during a voluntary swallow. In
addition to the strain data, we added the area underneath the curve
from the processed sEMG data as a feature. In the last step, we trained
the algorithm for each participant individually, using 3-fold cross-
validation tests on a total of 60 swallows per participant to evaluate
the performance of the trained algorithm (Figure 3b).

■ EXPERIMENTAL METHODS
Fabrication of the Graphene-Based Strain Gauge. The

nanocomposite strain gauges were fabricated by modifying a
previously published procedure.40 Briefly, we thermally evaporated 8
nm gold at a rate of 0.03 Å/s on a 7.5 cm × 7.5 cm piece of copper
foil with single-layer graphene (GrollTex, Inc.) grown on both sides
using an Orion System (AJA International). We recorded the
temperature of the main chamber to be 26−27 °C during the
evaporation process. The conductivity of the graphene film before the
metal evaporation was ∼2 kΩ. After evaporation of the metal, the
resistance decreased to ∼300 to 400 Ω.40 We observed another
increase in conductivity after spray coating the PEDOT:PSS “dough”
(∼100 to 200 Ω). In the design of a strain gauge, the resolution,
sensitivity, and signal-to-noise ratio are more important than the

absolute conductivity. After deposition, we etched the back side of the
piece in an air plasma cleaner for 5 min at 30 W at 250 mTorr to
remove the excess graphene layer. We then spin-coated the side
bearing the gold nanoislands with a 200 nm film of 4 wt %
poly(methylmethacrylate) (PMMA, Alfa Aesar) dissolved in anisole
(Acros Organics) at 4000 rpm with 1000 rpm/s for 60 s and annealed
it on a hotplate at 150 °C for 10 min. In this form, the Gr/AuNI films
were ready to be transferred (Figure 2).

To make the epidermal film onto which we would transfer the
strain gauges, we cut a 5 cm × 5 cm piece from a temporary tattoo
paper (Duradecal, Laser Temporary Tattoocarrier sheets) and
placed it onto a glass slide (76 mm × 52 mm). We taped the edges of
the tattoo paper to the glass slide using 1 mil (25 μm thick) polyimide
(Kapton) tape; the tape covered the whole top surface and the edges
of the back surface. Then, we spin-coated poly(dimethylsiloxane)
(Sylgard 184 PDMS, 10:1 base-to-curing agent ratio, 1 MPa) onto the
tattoo paper at 1000 rpm with 500 rpm/s for 60 s and cured the
PDMS on a hotplate at 150 °C for 10 min. We etched the copper
support of a 3 cm × 0.75 cm strain sensor patch piece in 0.05 g/mL
ammonium persulfate solution (APS, Acros Organics), transferred it
onto the tattoo paper, and allowed it to dry in air for 12 h. Later, we
etched off the PMMA support in an acetone bath for 1 min at 50 °C,
rinsed the piece with isopropyl alcohol, and gently dried it with a
stream of compressed air.

Figure 3. Schematic representation of the machine learning approach. (a) Workflow of the data processing and construction of the algorithm. First,
the raw data from the strain and sEMG sensors is processed by removal of the baseline noise and filtering. Next, the algorithm is trained to identify
the peak arising from swallowing and to look for the unique features around the peak. (b) Algorithm is trained and tested with a 3-fold cross-
validation method and used in estimation studies simulating 30 independent swallows of water by the participant.
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For the elastomeric conductive polymer layer, we used a highly
plasticized poly(3,4-ethylenedioxythiophene):polystyrene sulfonate
(PEDOT:PSS) “dough” recipe that was 92 wt % PEDOT:PSS
(Clevios PH 1000, 1.2 wt % in water), 3 wt % Triton-X-100 (Sigma-
Aldrich), and 5 wt % dimethyl sulfoxide (DMSO, Sigma-Aldrich).46

We further diluted this stock solution in deionized water in a ratio of
1:3 (stock/water). We spray-coated the PEDOT:PSS solution using a
custom stencil mask to cover everywhere on the sensor patch except
the Gr/AuNI sensor area. We placed the sensor piece on a hotplate at
150 °C and sprayed 8 × 1 s intervals as a primer, 4 × 10 s spray
intervals, then 4 × 20 s spray intervals waiting about 1 min between
each spray interval and rotating the piece 90° for an even coverage.
After spray deposition of the polymer, we added copper wiring (36
gauge) to each sensor and connected it with carbon paint (Ted Pella,
Inc.). We let the carbon paint dry for 12 h (to obtain a stable readout
of resistance), and later, we spin-coated PDMS (30:1 base-to-curing
agent ratio, 0.15 MPa) onto the whole assembly at 1000 rpm with 500
rpm/s for 60 s. We cured the PDMS on a hotplate at 150 °C for 10
min.
On-Body Experiments.We performed on-body experiments with

11 healthy participants (age between 21 and 30 years, 3 female, 8
male) with no history of swallowing disorders. We used an approved
protocol reviewed by the Internal Review Board at the University of
California San Diego Human Research Protections Program (Project
# 191950S) and collected signed consent forms from each participant
prior to the study.
The placement of the sensor and adhesion to the skin were critical

factors in the collection of high-quality data. Thus, the male
participants were directed to shave their necks for better adhesion
of the sensors. The participants sat comfortably in a chair, while we
placed two sEMG electrodes underneath their chin on the upper
throat area, and a reference electrode on the left collarbone (Figure
4a). We then applied the strain sensor to the skin by transferring it
from the tattoo paper. The long axis of the sensor was positioned
perpendicular to the neck, on the center of the throat, just below the
sEMG electrodes (Figure 4a). The horizontal orientation of the strain
sensor was more favorable than the vertical orientation due to
available space on the participant’s throat and nearly similar
estimation results (Figure S1). After this, we removed the backing
of the tattoo paper with a wet paper towel. The sEMG electrodes and
wires from the strain sensor were connected to the MAX30001
Evaluation kit for data acquisition. Finally, we immobilized the wiring
with Scotch tape. With regard to biocompatibility, all of the
components are encapsulated in PDMS, which is well known to be
biocompatible.49−52 That is, instances of contact dermatitis are rare.
Also, the commercial electrodes used for sEMG are ubiquitous in
professional healthcare settings.
Once we verified the correct placement of the sensor by visually

confirming that the strain sensor lied directly underneath the sEMG
electrodes and on the middle of the throat, we asked the participants
to sit in a chair in an upright but relaxed position (Figure 4b). Before
each swallow recording, the participants were given a small cup of
water of a known volume (5, 10 mL, etc.) and were asked to hold the

liquid volume in their oral cavity until they were directed to swallow
(Figure 4c). Once the recording started, the participants remained
still for 10 s, then swallowed the water, and then waited for another 10
s after which the recording was stopped. We tested volumes starting
from 5 to 30 mL, increasing in 5 mL increments for each participant
(5, 10, 15, 20, 25, 30 mL). The volumes were given in random order.
We repeated each volume swallow 10 times, yielding 60 swallows per
participant in total. During this time, the participants were allowed to
take as many breaks as needed.

Data Acquisition. To measure and collect sEMG and strain
signals from the sensors, we used the commercially available
“MAX30001 Evaluation System” (MAX30001EVSYS). This evalua-
tion system includes the MAX30001 Evaluation kit and a
corresponding GUI system software for configuring and saving the
data from the kit. This Evaluation kit can measure up to one channel
of ECG data (output data in mV) and one channel of Bioimpedance
data (output data in mΩ). For this project, we connected the sEMG
electrodes to the ECG channel (the sEMG signals’ magnitude and
spectral content are similar to ECG signals) and the strain sensor
wires to the Bioimpedance (BioZ) channel of the Evaluation kit. The
external lead biasing was used for both the channels for which the
reference electrode, placed on the collarbone, was connected to the
Body Bias pin of the kit. The ECG channel used for the sEMG signals
was configured to have a gain of 20 V/V and a sampling rate of 512
samples/s. On the other hand, the BioZ channel used for the strain
signals was configured to have a gain of 10 V/V, with a current of 32
μA at 80 kHz, and a sampling rate of 64 samples/s. To preserve the
full spectral content and have the flexibility to post-process the data at
a later stage, all of the digital filters post ADC were bypassed (Figure
S2).

Construction of the Volume Estimation Model. We began
constructing the volume estimation model by processing the raw data
from the sensors (Figure 3a). First, we cleaned the raw data from the
sEMG and strain sensors, which were composed of 660 trials/sensor
in total from 11 participants. For each trial, the swallowing data was a
one-dimensional temporal signal. The data output rates were 64
samples/s for the strain sensor and 512 samples/s for the sEMG
sensor. The strain data was cleaned with a three-order Savitzky−
Golay filter with a span of 1 s in each filter kernel. For the sEMG data,
we removed the low-frequency baseline drift noise lower than 10 Hz.

Next, we extracted the swallowing signal features from the sEMG
and strain data. For the features in the sEMG signal arising from
swallowing, we calculated the area under the peak vs time by
integrating a time interval of 0.4 s that centered at the peak of the
swallow. For the strain signal features, we first identified the
swallowing peak with our algorithm and then applied the fiducial
point method to quantify the features of interest. We identified the
swallow peak by searching for the maximum positive differentiation
value in the swallowing data. The pseudocode of the swallowing peak
detection algorithm is shown in Figure S3. Using this approach, we
empirically selected two valleys and two peaks in the strain data, as
illustrated in Figure 3a. The first of the two peaks belonged to the
swallowing peak, whereas the next one was attributed to motion due

Figure 4. On-body experimental setup. (a) Close-up image of the strain and sEMG sensors on the throat of the participant and the MAX30001
Evaluation kit used in the experiments. The scale bar is 3 cm. (b) Photograph shows the testing setup where the sensors are connected to the
Evaluation kit, which is connected to a laptop, and the participant is seated in a relaxed position before being instructed to swallow water from the
cup. (c) Image captures the participant being instructed to swallow the known volume of water.
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to recovery from the swallow. The two valleys were present right
before and after the swallow peak. Using the fiducial points, we
extracted additional features by fitting three-order polynomial curves.
These additional features included the durations, magnitudes, slopes,
curvatures, and kernels constructed by the curves enclosed within the
fiducial points in the strain data and area under the curve in the sEMG
data (Figure S4).
Finally, for machine learning, we applied canonical correlation

analysis to build the swallowing volume estimation algorithm.
Canonical correlation analysis is a technique that seeks the optimal
linear combination of the input features to fit the output swallow
volume. We used the canonical correlation analysis to find the features
for the most optimal linear combination. In our case, the input of the
algorithm was the extracted features, and the output was the
swallowed water volumes by the participants. We evaluated the
built algorithm using 3-fold cross-validation tests on the training data
for each participant by randomly splitting the 60 trials into three
groups, with each group having 20 trials. Next, we trained the swallow
volume estimation algorithm with the data from two groups, while
using the third group for testing the model. We iterated through all 3-
fold computations and evaluated the accuracy of the estimations while
accumulating the swallowed volume each run. For example, from 60
tested trials from one participant, we randomly selected 30 trials and
summed the predicted volumes (Figure 3b). Finally, we computed the
accuracy of the algorithm by comparing the estimated swallow volume
to the exact swallow volume. It is important to note that the algorithm
estimations were calculated one participant at a time, therefore
making the results specific to each participant.

■ RESULTS AND DISCUSSION
The swallowed volume had a strong influence on the strain
present at the surface of the skin. In particular, the volume
appeared to be closely related to the ratios between the heights
of the two peaks in the signal (Figure 5). As the liquid volume

increased, the first peak became smaller in magnitude, whereas
the second peak became larger, possibly due to the large
displacement of the hyoid bone to allow for the epiglottis to
open enough for a larger volume to pass.
It is worthwhile to consider the physiological origins of the

features in the data. Such an understanding can lead to
improved design of devices and can inform interpretation of
the volume estimation algorithm. The sEMG data reflected
muscle activity in the submental region, whereas the strain
waveforms arose from the movement of the skin over the

laryngeal/thyroid notch during swallowing. The strain wave-
forms for each participant showed two peaks due to the tensile
strain experienced by the skin during a swallow. The first
tensile strain peak represented the start of the oral propulsive
stage during a liquid bolus swallow, described by the four-stage
model.53,54 During this stage, the tongue rises upward to meet
the top of the mouth and open the back of the oral cavity to
squeeze the liquid bolus back into the pharynx. The second
tensile strain peak represented the pharyngeal stage. During
this stage, the hyoid bone and the larynx are displaced upward
and forward, causing the suprahyoid and thyrohyoid muscles
to contract as the epiglottis tilts backward to allow the bolus to
travel in a downward motion.55−57 Once the bolus was pushed
down, all structures reverted to their original positions,
resulting in the relaxation behavior that appeared after the
second tensile strain peak.
Due to the low viscosity of a liquid bolus, it has been

observed that the pharyngeal stage begins during the oral
propulsion stage. The first peak in the strain signal arises from
the first phase of the swallowing event where the muscles on
the throat open the way to the esophagus; the second peak is
from the relaxation of the structures back into their original
positions. In our previous work, the peaks in the strain signal
and the phases of the swallow were identified by X-ray
videofluoroscopy using a radio-opaque bolus.35 In this
experiment, one of the patients was given a barium-containing
paste, and the swallow was recorded by video X-ray imaging.
The patient performed an identical swallow while wearing the
strain sensor.
According to our observations, the height and duration

ratios of these two tensile strain peaks varied between
individuals but were always present. These features enabled
our estimation results using the machine learning algorithm in
the later stages, regardless of how different the swallowing
behaviors were for each participant.
Finally, we developed a machine learning algorithm to

automate the detection of a swallow in a strain signal and
identify the features that aid the estimation of an unknown
swallowed volume by an individual. We used the strain and
sEMG signals from the cohort study to train the algorithm and
validate it using a 3-fold cross-validation method. Each fold in
the validation method splits the 60 total swallows by a
participant into 3 groups of 20 swallows and assigned two of
them to be the training data and one of them to be the testing
data. The accuracy of the estimation of the true volumes of the
testing data is shown in Figure 6. The average accuracy of the
estimations of all of the cohorts was higher than 92%, reaching
as high as 98%, as seen in Figure 6a. The absolute error for
estimation of each tested volume was on average 5 mL and
decreased as the swallow volume increased (Figure 6b). Using
the estimation results, we plotted a calibration curve to
compare the true observed volumes and the estimation
volumes. Except for one participant, all of our cohort data
estimations followed closely to the true volumes (Figure 6c).
Statistically, more training data results in better performance

of the algorithm and thus better volume estimation. In our
studies, the machine learning algorithm estimated cumulative
swallowed volumes with higher accuracy than the volume of a
single swallow because of the law of averages. Each cumulative
swallowed volume was the sum of 30 swallows randomly
selected out of 60 total swallows collected from the
participants. Thus, having more data per estimation increased
the accuracy of the algorithm. In addition, the algorithm was

Figure 5. Evolution in strain signals as a function of the swallowed
volume for one participant. Vertical axes show the change in the
resistance normalized by the baseline resistance and the horizontal
axes show the time in seconds. (a) All of the volumes are plotted for
comparison for one participant. Data are plotted after data processing.
Each line is the average of 10 swallows. (b) Plot shows a
representative swallow from the strain sensor for 5 mL and some of
the features that are extracted by the machine learning algorithm.
Four fiducial points are labeled from 1 to 4. The features include the
distance between these points, the amplitudes, and the slopes between
the points, as shown on the plot.
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able to estimate the volumes of larger swallows with more
accuracy than the volumes of smaller swallows. This can be
explained from our observations throughout the experiments
with different participants. Most of our participants described 5
mL as too small to swallow, implying that the 10−30 mL range
is more comparable to quantities swallowed for everyday
hydration. Hence, there were more variations between each
trial for 5 mL than any other volume. Related to this limitation
is the amount of water we asked participants to swallow
throughout the experiment. Each seated participant drank
roughly 1.05 L of water, which was the maximum amount the
participants could drink comfortably during the experiment.
Due to this limitation, we did not collect more than 10 trials
per volume. Finally, we observed that the placement of the
strain sensor was crucial for the validity and reproducibility of
the data. If the strain sensor was placed in an off-center
position or could not conform well with the participant’s skin,
the estimation results were less reliable, which was the case for
Participant 8. Nevertheless, we included the Participant 8’s
data in our volume estimation studies to test the adaptability
and robustness of our sensor system. After all, even with the
sensor placement issue, the estimation results were very
promising and proved the robustness of our overall sensor
system.

■ CONCLUSIONS

In this work, we have demonstrated the use and application of
coupling a highly sensitive strain sensor with a machine
learning algorithm to perform an accurate estimation of the
swallowed volume. The nanomaterial-enabled device permits
minimally obtrusive measurements, which may facilitate the
assessment of hydration state, or be used to monitor
swallowing function over time for the prevention of diseases.
Nevertheless, in its current state, our system has some
limitations. For example, the sensor platform was tested
while the participants were seated. In real-world conditions
i.e., sports medicinemeasurement will necessarily take place
while participants are in motion. To solve this problem, the
form factor of the supporting electronics will have to be
miniaturized, and the sEMG electrodes will have to be
integrated into the epidermal patch. Our current work is
moving toward a flexible custom PCB that wirelessly transfers
data to a phone app during exercise. Another limitation to our
current system is the fact that the machine learning algorithm
is run on a single-participant basis. To accommodate for this
problem, we are working toward collecting more swallowing
data from different participants to add into the training pool of
the algorithm. Eventually, with all of the accumulated

swallowing data, the algorithm will be able to estimate any
swallowed volume with high accuracy for any new participant.
We are also expanding the type of liquid boluses whose

volumes can be measured. For example, the range of properties
represented by water, energy drinks, carbonated beverages,
protein shakes, and chewed food pose challenges for
measurement using our system but not insurmountable ones.
In the previous work, we have shown that it is possible for a
system similar to the one described here to differentiate water,
yogurt, and a cracker with high accuracy. The ability to identify
the food bolus and also estimate its volume could have
implications in monitoring food intake to treat obesity. Given
the centrality of swallowing to essentially all aspects of human
health, we believe that there is significant potential for the
device and methodology described here in the fields of sports
medicine, rehabilitation, nutrition science, and speech-
language pathology.
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